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Global vs Local Forecasting Models - air quality Monitoring Network

Local Model Global Model

Each monitoring station has its own model (local) Stations are considered part of a single model (global)
Training parameters are not shared among different stations Training parameters are shared among different stations
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Covariates

A covariate is a time series that may help forecast the target series, but we are not interested in predicting. It's
sometimes also called external data or exogenous variables to some extent

We could further differentiate covariates series, depending on whether they can be known in advance or not:

» Past Covariates: time series whose values in the forecasting horizon are not known. These are usually things that
have to be measured, i.e. past observations

» Future Covariates: time series whose values in the forecasting horizon are known. These can for instance represent
known future holidays, weather forecasts, or weekday

. - ” o~ —
Target series: what e~ M STl
we want to forecast '/\/_\'/\/’ N ~-a -
— -~ — —

Past covariates:

. — ""““""—“\«\ — r 4 —
Unknown into the future = \;’ ~ \\j\\/ —
e.g. measurements

Future covariates: —_— T
Known into the future
e.g. calendar, weather

forecasts, actions taken

W

Image courtesy of Darts, https://github.com/unit8co/darts Forecast time Horizon
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Global Model — Graph Neural Network (GNN)

Graph Neural Networks (GNNs) are networks for processing data that can be represented as a graph, like social
network, molecular systems, a ground monitoring stations network, etc.

What is a graph?
A graph is a mathematical structures used to model (pairwise) relations between objects, i.e., objects (nodes, or
vertex), relations (edges, or link). We can store information in each of these pieces of the graph

Practical applications of these architecture goes from drug discovery, physics simulations, fake news detection, traffic
prediction, recommendation systems ... and time series forecasting ©

V Vertex (or node) attributes

E Edge (or link) attributes and directions

/ U Global (or master node) attributes

Image courtesy of an interactive introduction that can be found here: https://distill.pub/2021/gnn-intro/ Sanchez-Lengeling, et al., "A Gentle Introduction to Graph Neural Networks", Distill, 2021.
Introduction to Graph Theory: A Computer Science Perspective, https://www.youtube.com/watch?v=LFKZLXVO-Dg&ab channel=Reducible
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Global Model - spatioTemporal GNN (STGNN)

SpatioTemporal GNN (STGNN) are a particular type of GNN that implements mechanisms to process graph-like data that
could evolve in both space and time

A representation of a network of monitoring stations is a graph where each station corresponds to a node and the
functional dependencies among the stations can be seen as edges

Time-evolving observations coming from ground monitoring stations
inherently contains rich spatiotemporal dependencies

The dependency structure of the observations can be captured, DRl [ ecasting |
through pairwise relationships among the stations

Input Series  Target Series Predictions

r ~
> od

Il g
AW}

N
Loss A

A ,":‘:?“(t,&“,\
STGNN can be dissected from three aspects: ' (Oooooooo i S—
|| OO0O000000 ! Py
1) Modeling spatial (i.e., inter-variable) dependencies E EEEEEEEE) !
2) Modeling temporal dependencies """"""": """"
3) The architectural fusion of spatial and temporal ggggg
modules for time series forecasting Spatial-Ter;poral GNN » __
(7]

Representations

Image courtesy of Jin, M., et al., 2023. doi: 10.48550/arXiv.2307.03759
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Global Model - spatioTemporal GNN (STGNN)

Stations = Graph’s Nodes Stations’ Relationships = Graph’s Edges
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Global Model — SpatioTemporal GNN (STGNN)

A representation of a network of monitoring stations is a graph where each station corresponds to a node and the
functional dependencies among the stations can be seen as edges
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Local Model - Time-series Dense Encoder (TiDE) [1]

Yoi1.L+H

» Forecasting architecture proposed by Google Research in 2023

Residual
» Very lightweight and computational efficient +
> Exploit the knowledge from past and future covariates temporal Decoder
Unflatten
g0 :
— | Stack
Simplified Working Principle Dense | | Friien )
Decoder
. . . XNg
1) TS mapping: covariates are mapped (per time-step) to a lower
dimensional space using a feature projection block Block e
2) TS encoding: a concatenation of the past target y (lookback) Dense E -
along with the projected covariates, form the encoding e Encoder et
3) TS decoding: the decoder maps the previous encoding to a oy
vector (per time-step) in the forecasting horizon, forming g
4) Final prediction: a temporal decoder combines this decoded

vector (per time-step) with the projected covariates of that
time-step in the horizon to form the final forecast y hat

Feature

Projection
(per time-step)

Lookback Attributes

Dynamic Covariates

[1] A. Das, W. Kong, A. Leach, S. Mathur, R. Sen, and R. Yu, “Long-term Forecasting with TiDE: Time-series Dense Encoder.” arXiv, Aug. 08, 2023. Available: http://arxiv.org/abs/2304.08424
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Global-Local (Hybrid) Model

The basic idea is to combine information obtained using a single (global) model (GNN) — where the parameters are shared
among different stations — with ones obtained from multiple single (local) models (NN) — where the parameters are related
to the single model, precluding the parameter sharing between stations

These models can be denoted as Global-Local (or Hybrid) STGNN since they implement several mechanisms to combine
global (graph-level) components with local (station-level) components

In this way, we can:
1) Exploit relational dependencies together flexibly and efficiently, thanks to a graph representation = Globality
2) Obtain accurate prediction specialized for each node, i.e., the stations of our monitoring network = Locality

Introducing local components related to a specific station’s time series explicitly accounts for node-level effects that would
not be efficiently captured by the sole fully global models.

For example, node-level (station-related) effects could be the range, dynamics, and trend, strictly related to a specific
station

These node-level effects can be learned directly from data and form the so-called learnable node embeddings, providing
a means to condition representations at each station with respect to the peculiarities of its time series

Antonio Giganti - Politecnico di Milano - Italy



Global-Local (Hybrid) Model - acern (1]

» One of the most recent hybrid STGNN is the Adaptive Graph Convolutional Recurrent Network (AGCRN) [1]
» Proposed for traffic forecasting
» Learns the hidden graph topology (A matrix) and combines global and local characteristics in an end-to-end fashion

Simplified Working Principle

1) Input: series of temporal consecutive graph Input Data Learning Blocks Forecast
2) Fully Connected (FC): input mapping Time PO 1 P Time
3) Node Adaptive Parameter Learning (NAPL): 47\\/ 47\\/
captures specific spatial and temporal g v 1 1 T+t v
characteristics of each node , A e nd | 5 — 5 3 2 > = -+ 4/\/
4) Data Adaptive Graph Generation (DAGG): learns 2 / | S /
1 ‘7\ T+ ‘./.\

the underlying graph topology from data with a
node-level similarity function

5) Gated Recurrent Unit (GRU): models the temporal
dynamics incorporating both spatial and temporal
information

6) Fully Connected (FC): output mapping

7) Output : the prediction, thus series of temporal
consecutive graph

Images courtesy of Gao, X., et al.
https://doi.org/10.3390/app132011369

[1] L. Bai, L. Yao, C. Li, X. Wang, and C. Wang, “Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting,” Neural Information Processing Systems (NeurlPS), 2020.
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Exploiting future covariates in STGNN - MAGCRN [1]

» Future covariates, like weather forecast or calendar events, could be used to improve the forecast

» Most of the STGNNs do not directly allow for future covariates exploitation !

» We propose the Modified AGCRN (MAGCRN) [1] that leverages the ability of conditioning the forecast not only on past
but also on future information, at the same time take all the advantages of the AGCRN explained before

Simplified Working Principle

1) Input: series of target time series X, and past (p) Past Covariates Predicted
and future covariates ( ') from multiple stations / Target
2) Conditioning: the input time series X is UP
conditioned on past and future covariates oW} Trainable Unit
. P{ : Cond 1 —«
separately, forming C [N x W]~ CP EP
3) Embedding estimation: the 2 conditioning [N x W x Z] [N x Z] XN < H]
p [N xW] O t1,H
signals C are used to extract 2 different X{to,W} ] @ m] —{tnH}
spatiotemporal embeddings, E [V x H x Z] [V % Z]
. . [N x H]L, ‘ol Ef
4) Past&Future fusion: a combination of the 2 | & Cond 5 o
embeddings E forms the final embedding, O U B
5) Fully Connected (FC): output mapping tot Xf[N x H] —
6) Output: forecasting of the target signal X in \ {t1,H}
multiple stations, all at once Past Target Future Covariates

[1] A. Giganti, S. Mandelli, P. Bestagini, U. Giuriato, A. D’Ausilio et al., “Back To The Future: GNN-based NO2 Forecasting Via Future Covariates”. International Geoscience and Remote Sensing Symposium (IGARSS) 2024.
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Exploiting future covariates in STGNN - MAGCRN [1] - Building Blocks

Conditioning Past&Future Fusion

» The fully-learnable conditioning module perform a > The Past&Future embedding fusion simply combine the
conditioning of the current observed time-series window, 2 hidden spatiotemporal representation of the 2

on both past (or future) covariates separately branches, i.e.,

» In general, given 2 generic data matrices, Ki,Kz, the

module computes the conditioning as
g © O=(1-a)E’+aE’

Cond(Ki,K2) = MLP(¢(MLP(K;))) + MLP(¢(MLP(K2)))

» For a specific case of past covariate conditioning, we have: » The a parameter balances the contribution between the
past and the future representation of the output
p
Z/{{tO:’W}; [N x W x Z] [N x W x Z]
P MLP |——>| ¢ |——| MLP
[N x W] @—)Cp
X [N x W x Z] [N x W x Z] [N x W x Z]
XY o wy—>| MLP |——| ¢ [——>| MLP )

[1] A. Giganti, S. Mandelli, P. Bestagini, U. Giuriato, A. D’Ausilio et al., “Back To The Future: GNN-based NO2 Forecasting Via Future Covariates”. International Geoscience and Remote Sensing Symposium (IGARSS) 2024.
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Use Case
"/ NO, Forecasting )



We conduct experiments on a recently released real-world dataset composed of hourly-sampled air quality, meteorological
and traffic data from 24 different ground monitoring stations in the city of Madrid (Spain), from January to June 2019 [1]

030 EE A The released data include:
ol 8 > Airquality data — NO, concentration [ug/m’]
40.500 [ <=k - - \ o T???Q}‘Y;‘?So— { L8 fs,anchmmf{}; G » Meteorological data — wind speed [m/s], wind direction
‘ ‘ ‘ M7 ; ; : . . A .
40,430 [NV . - oBade?l—Pﬂ@f —————— BawasPueblodf« a [rad], temperature [°C], relative humidity [%], barometric
e W o o Pl G+ Embajada & . : 5
T e ;deémfoﬁyCM oﬁlCaﬂgL pressure [mb], solar irradiance [W/m?]
so.a40 el A\ IS Raplin g ARSI ST B
40420 l L Mamdeha, ;,,gESO,u?{??AgP}YF? 7l i‘;,,f, & = > Traffic data — intensity [vehicles/h], occupancy time [%], load
CasadeCampo Plaza del Carm M tala ‘ =t . .
w0400 D _:m_,,7;‘;;?@@27,;?;2 e DRSS oa i (degree of congestion) [%], average traffic speed [km/h]
: ‘ : Farohllo oPlaza Ellptlca ‘oVallecas Py | I~
40380 [ 55 o Ae s AG i de Vallogas
10360 [P B g s T N e S LA -
oY ;ovll!aver.d?"sw U A Target: NO, concentration
40.340 por - o AGER s o P e DK - - . .
DARIME AEs Sl V2N~ 2 W 2 Past Covariates:  Traffic Data + Calendar
10320 i IP s b FS ek o (@R T T . .
e G AT e N )N e i Future Covariates: Meteorological Data + Calendar
wap—
S 2 2 83 2 8 8 %8 8@ 3 8 8 8 8 %

[1] D. Iskandaryan, F. Ramos, and S. Trilles, “Graph Neural Network for Air Quality Prediction: A Case Study in Madrid,” IEEE Access, vol. 11, pp. 27292742, 2023, doi: 10.1109/ACCESS.2023.3234214.
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Network Baselines

We select 3 STGNN that are the state-of-the-art for time series forecasting:

» Graph WaveNet [1], which integrates diffusion graph convolutions with dilated convolutions to capture spatial and
temporal dependencies more effectively

» Gated GNN (GGNN) [2], that integrates gated mechanisms and residual connections for effective information
propagation along the graph

» AGCRN [3], the reference architecture which our method is built upon and explained before

Although very recent, none of these STGNNs directly supports future covariates, contrarily to our proposed MAGCRN

In addition, we focus on STGNNs that directly learn the adjacency matrix (/latent graph) of the graph nodes (nodes
relationships), since predefined matrices usually discard additional spurious correlation between them, i.e., our monitoring
stations

[1] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep spatial-temporal graph modeling,” International Joint Conference on Artificial Intelligence (IJCAl) 2019, pp. 1907-1913.
[2] V. G. Satorras, S. S. Rangapuram, and T. Januschowski, “Multivariate Time Series Forecasting with Latent Graph Inference.” arXiv, 2022. doi: 10.48550/arXiv.2203.03423.
[3] L. Bai, L. Yao, C. Li, X. Wang, and C. Wang, “Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting,” Neural Information Processing Systems (NeurlPS), 2020.
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Results

... actually, some of the them ©
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Target: NO, concentration

ReS u |tS . Global . Graph Neural Network Past Covariates: Traffic Data + Calendar

Future Covariates: Meteorological Data + Calendar

[ Network Comparison ]

» We compare the performance of multiple GNN-based (global) forecasting architecture and the previous TiDE (/ocal) model

» We compute the MAE value for each station in the observation network

B MAGCRN
BN TiDE
B Gated GNN
[ AGCRN
B Graph WaveNet

17.5- .FI

AE

M

6 7 8 9

0.0-
v 1 2 3 4 5

1 15 1 1 1 1 2

» Our proposed MAGCNR, almost all the time outperforms all the considered state-of-the-art DL-based forecasting
models (red bars). The dashed (-----) lines denote the mean MAE values among all the stations, for each model

0 14 6 7 8 9 0
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Target: NO, concentration

ReS u |tS . Global . Graph Neural Network Past Covariates: Traffic Data + Calendar

Future Covariates: Meteorological Data + Calendar

] Target
MAGCRN only All the baselines — = AGCRN

== Gated GNN

= = Graph WaveNet
MAGCRN

[ Prediction Examples ]

100- —_— Targ?t A
=== Prediction

> )
L = -
= = 50
<
= 50 =
T —— :’ \:“:———-———- .
- ==
0- 0 - ]
0 5 10 15 20
Time
 Su—
60 - —— Target
—— Target 100- -—- Az(gJCRN
-=-=- Prediction =TT N == Gated GNN
L 40 - o N == Graph WaveNet
it = N ~ = MAGCRN
< < - Pid
- S 50 |5 /
20~ ~ee__\ F N T~ Q:\ ______ o
______
0 5 10 15 20 0 5 10 15 20
Time Time
AN Target
/ \ == AGCRN
20 / Y == Gated GNN
z (] 40 - \ == Graph WaveNet ,/\\\
= = N MAGCRN
< <
= -
10- 20- =
Ssao g === Prediction - ~ O ~
0 5 10 15 20 20
Time
Targe
—— Target 100- P
=== Prediction == Gated GNN
) o == Graph WaveNet
i—f 50- = ~ = MAGCRN
S S K
= = 50
0-
Time Time

Examples of predictions from station 1 (right) — MAGCRN only — and 20 (left) —all the selected baselines. The time is in hours, the value in the predicted NO2 concentration at the station
Notice how — red boxes, right figure — MAGCRN is the only one that tries to recover concentration maxima, and the others fail to predict it
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Target: NO, concentration

Resu |tS _ Global _ Graph Neural NetWOFk =y Past Covariates: Traffic Data + Calendar

Future Covariates: Meteorological Data + Calendar

[ Parameter Sensitivity ] 11.0<<\/\< */"\/
10.51

10.51
. m
We explored the role of (from right to left): = 10.0] \/\ 10.0/ ‘/‘\A/A
] 9.51
1) the number of layers of the AGCRN module o '\,_/*'\v v/\/'

2) the size of the node’s (station’s) embeddings ! Cber of layefs 4 4 SEmbeddmg Sizlf 32
3) the a factor used to balance the action between

past and future conditioning 14 1107 Q
4) the size of the hidden representation, Z = 10.51

= 10.01
We report the achieved MAE as a function of 10 0.5
the analyzed parameters, for different EP 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 8 16 32 64
. . *
forecasting horizons [NV > Z] l o a Z
*Each time we vary a parameter, we set the other to its default value B ® IV x 2 V 1-day, A 2-day, « 3-day forecasting horizon
Embedding size=10, Num. Layers=3, Z=64 and a =0.5 [NEXf ] I

» From the figure referred to «, it is possible to notice a particular behavior, consistent among all the forecasting horizons:
the future weather conditions are more important (higher a) for the final the forecasting task, compared to the past traffic
conditions (lower «), leading to a lower ¥+ MAE

» For the forecasting horizons that are distant to the one adopted in training (2-day and 3-day), the future conditioning
becomes even more crucial to achieve acceptable results

Antonio Giganti - Politecnico di Milano - Italy




Target: NO, concentration

Past Covariates: Traffic Data + Calendar

Results — Global — Graph Neural Network . :
Future Covariates: Meteorological Data + Calendar

[ Latent Graph Learning }

» Most of the GNNs for forecasting, used a predefined graph topology — defined by a weighted adjacency matrix (A) — thus
imposing a priori station-to-station relationships information

» Usually - in the Air Quality forecasting context - the A values are the inverse of the geographical distances between stations

» This prevents the possibility to consider additional correlations that could exists between stations

» For this reason, we let the network learn these additional correlation directly from the data

» In addition, having 2 different branches (Past&Future conditioning of the input), we have 2 different adjacency matrix (A)

Station Station Station

Station
Station
Station

A-priori A from stations’ Learned A Learned A
geographical distances from Past Covariates from Future Covariates

» We can see that past and future covariates conditioning, leads to different stations correlations, validating the
approach of considering at the same time, both conditioning in the forecasting process

Antonio Giganti - Politecnico di Milano - Italy



Future Works

» Asses the model performance using a more rigorous forecasting metrics, e.g. False Alarms, Missed Alarms, Good
Above Threshold, Good Below Threshold, Index of Agreement etc.

» Test the model on a longer, sparse and topologically varied dataset e.g. on a regional, even national scale
» Better handle extreme events, e.g. concentration peaks
» Proper integration of future covariates directly into the GNN’s message-passing process

» Explore dynamic graph structures, e.g. a time-dependent adjacency matrix (one for each time step)

Antonio Giganti - Politecnico di Milano - Italy
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ABSTRACT

Due to the latest environmental concerns in keeping at bay contam-
inants emissions in urban areas, air pollution forecasting has been
rising the forefront of all researchers around the world. When pre-
dicting pollutant concentrations, it is common to include the effects
of environmental factors that influence these concentrations within
an extended period, like traffic, meteorological conditions and geo-
graphical information. Most of the existing approaches exploit this
information as past covariates, i.e., past exogenous variables that af-
fected the pollutant but were not affected by it. In this paper, we
present a novel forecasting methodology to predict NO, concentra-
tion via both past and future covariates. Future covariates are rep-
resented by weather forecasts and future calendar events, which are
already known at prediction time. In particular, we deal with air
quality observations in a city-wide network of ground monitoring
stations, modeling the data structure and estimating the predictions
with a Spatiotemporal Graph Neural Network (STGNN). We pro-
pose a conditioning block that embeds past and future covariates into
the current observations. After extracting meaningful spatiotempo-

demonstrated considerable success in pollutant forecasting by cap-
turing nonlinear temporal and spatial patterns very effectively [2],
[71.

In the last few years, there has been a surge in the popularity of
applying Spatiotemporal Graph Neural Networks (STGNNs) to pol-
lutants forecasting [8]-[14] since they can process the data structure
by modeling it as a graph. Indeed, the underlying assumption is to
incorporate the data structure as an inductive bias [15]-[17]. Time-
evolving observations coming from ground monitoring stations in-
herently contains rich spatiotemporal structure and spatiotemporal
dynamics. The dependency structure of the observations can be cap-
tured through pairwise relationships among the stations. These rep-
resentations form a graph where each station corresponds to a node
and the functional dependencies among the stations can be seen as
edges.

Most of the existing approaches capture spatial dependencies on
a fixed graph structure, assuming that the underlying relationship
between entities is fixed and pre-determined [12], [18]-[20]. How-
ever, the explicit graph structure may not necessarily reflect the true

ral representations, these are fused together and p d into the
forecasting horizon to generate the final prediction. To the best of
our knowledge, it is the first time that future covariates are included
in time series predictions in a structured way. Remarkably, we find
that conditioning on future weather information has a greater impact
than considering past traffic conditions. We release our code imple-
mentation at https://github.com/polimi-ispl/ MAGCRN.

Index Terms— Air Quality Forecasting, Spatiotemporal Data,
Graph Neural Network, Graph-based Forecasting, Urban Computing

1. INTRODUCTION

In the landscape of 21st-century environmental concerns, air pol
lution forecasting has risen to the forefront, capturing wi

P between and existing i ips may
be missing due to incomplete data connections [21], [22]. Recently,
graph learning methods have been proposed [23] that allow to learn
the graph structure directly from data. These techniques are promis-
ing, pushing forward the forecasting abilities [21], [24], [25].

In the context of air pollutant forecasting like NO2, PM;o and
PM, s, it is reasonable to assume that including auxiliary information
helps the prediction performance. This is motivated by the fact that
air quality is often influenced by exogenous variables like traffic and
weather conditions. For example, traffic-related emissions have been
one of the top contributors to air pollution in many cities around
the world. It has been proved that these emissions can deteriorate
ambient air quality on a large spatial scale, especially during the
morning and evening rush hours in urban regions [4], [8], [18]. In
addition, studies have shown that air pollutants vary under different

attention at a global scale. Addressing this chall re-
searchers have delved into the exploration of effective solutions, en-
deavoring to precisely forecast air pollutant concentrations through
a variety of methods. Among these approaches, Deep Learning (DL)
methods currently hold the predominant interest, marking significant
advancements in the efforts to forecasting air quality parameters and
mitigating the impact of air pollution [1]-[3].

Pollutant concentrations exhibit intricate correlations in both
temporal and spatial domains, and these correlations dynamically
evolve over time [4]-[6]. Recently, DL-based approaches have

This work was supported by the Italian Ministry of University and Re-
search (MUR) and the European Union (EU) under the PON/REACT project.

meteorological it [5]. Indeed, the temperature affects the
a spheric and ilati ditions; humidity and precipitation
can change the deposition characteristics of particulate matter; wind
speed promotes the diffusion and spread of pollutants [26].

All this information could be included in the air quality forecast-
ing as covariates, i.e., exogenous variables that affect the pollutant
to predict, but are not affected by it. For instance, past covariates
are represented by traffic conditions, meteorological factors and ge-
ographical information. Future covariates are all the future-related
information that are known in advance, like weather forecasts and
calendar events (seasons, days of a week, time of a day) [4].

Past covariates have been successfully exploited in [11]-[14],
[18], [19]. To the best of our knowledge, very few STGNN-based
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Why Deep Learning for Time Series (TS) Forecasting ?

» Learning from Data

Classical Methods: Rule-based, rely on explicit models/physics law/assumptions
Deep Learning: Data-driven, learns patterns and relationships automatically
Accelerating Extreme
> Interpretability AL
Classical Methods: Transparent, easier to understand but may oversimplify '
complex systems
Deep Learning: Sometimes considered a "black box," challenging to
interpret ,
GraphCast
[0 Googie ecpiina 8
... and some big companies (like Microsoft, Google, NVIDIA, Copernicus) are investing on it [1-5] Y

@ 2 e - (opemicus éECMWF
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Training Details - Local Model

v ] o f Target: NO, concentration
t ! fut . .
X{tO,W} PAst e X{tl JH) Past Covariates: Traffic Data + Calendar
40_5 NO ............................................................. grim——— ;.: ............................. Future Covariates: Meteorological Data + Calendar
a0 2 N 77N
< Concentration :'I * AN
= N ! N
YN s | O Training Parameters Details
W: 24 h of the historical window [past]
— H: 24 h of the forecasting window [future]
Traffic Forecasting Horizons: 0-24, 25-48, 49-72 h
Data # Train windows: 3820 max
" # Test windows: 429 max
% Data Splitting: “causal”, 70/20/10 % for TR/VAL/TS
S| Weather TR: January-April | VAL: May | TS: June
é Condition uf
s Measurement {t1,H}
s|  NF Oy | s .
z : : : /7 ‘——.\‘\ s Il, \.
2 Weather N RO N i \ ," . /
© 2 : ) R S ;i A NS
+ | Forecast N - S o RN S -7
e : . : 3
o : : : :
° I RN ;e
Calendar-related : P
Information 3 N E
— [ ° o [ ° i ——i [ ° o ° ® ® Predicted True
: : : : S —— — e e —— — — : : : Ny Target Target
to- W to t; t,+H time
) w . ) H .

> e Ui — i
To train and assess the performance of our models we use the Mean Absolute Error (MAE) as MAE =
Sample Size —p> T
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Training Details - Global Model

Target: NO, concentration
Past Covariates: Traffic Data + Calendar
xP past | future %</ )y  Future Covariates: Meteorological Data + Calendar
N {to,W} {t1,H}
| NO : ;e Training Parameters Details
S Concentration /] \
o s / \
! . ‘/ o W: 24 h of the historical window [past]
o H: 24 h of the forecasting window [future]
L{pt W a: 0.5, mixing coefficient btw past&future
~ N ) {to, W} . Forecasting Horizons: 0-24, 25-48, 49-72 h
Traffic # Train windows: 3820 max
Data # Test windows: 429 max
Data Splitting: “causal”, 70/20/10 % for TR/VAL/TS
[%]
% TR: January-April | VAL: May | TS: June
S| Weather
3 | Condition
(a)_, Measurement
5
=
L
2 Weather
; Forecast
N N time-series as the
¢ * number of station in
Calendar-related our monitoring
Information network
- ® ° *— ® ® & ® e *—| ® ° °®
: : ' : ! ! : : : : : : : : : >
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Target: NO, concentration

Re S u |tS . Local _ TI DE Past Covariates: Traffic Data + Calendar
Future Covariates: Meteorological Data + Calendar

[ Future Conditioning Studies ]

» We compare the performance in conditioning the prediction with Past or Past&Future covariates
» REMEMBER: we train 1 model for each monitoring station !

20.0- B v/ Fut. Cov
B w/o Fut. Cov

17.5-

15.0-

| i
Wil Fallawat bk
Bl L ERRERR LR
- HEREUEREEERERRERER R
mitttiieentieinnetiiinn
- HHNNNNNNNRRRNRRRRRERREE

1 1 14 15 16 17 18 19 20 21 2
Statlon ID

» As we expected , most of the time, conditioning the prediction with future covariates (blue bars), i.e., using the

weather forecast, brings the best results in terms of forecasting accuracy

,_.
o
ot

Mean Absolute Error
—
'CJ'( \] (@)
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b
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C
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Results - Local - TiDE

Target: NO, concentration
Past Covariates: Traffic Data + Calendar

Future Covariates: Meteorological Data + Calendar

[ Future Conditioning Studies ]

5-
—— Target
- === w/ Fut. Cov.
é 50- - w/o Fut. Cov.
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=
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= ortselet Nemme T
0 5 10 15
Time
—— Target
—--- w/ Fut. Cov.
¢ 40- L
E --- w/o Fut. Cov4/~
= -
=
20- - -
0 5 10 15
Time
50- — Target
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Examples of predictions from station 1 (left) and 22 (right) — thus 2 different training — referred to same time-span. The time is in hours, the value is the predicted NO, concentration at the station
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Target: NO, concentration
Past Covariates: Traffic Data + Calendar

ReS u |tS a LOC8| — TIDE Future Covariates: Meteorological Data + Calendar

[ Cross Station Generalization ] 30

» We asses the performance in using a model trained
on a specific station, i.e., A, to predict NO,
concentration on station B

» This could be seen as a generalization study, to
spot cluster of stations that have the same
prediction behavior

—_
o

—_
—_
| . |

20

[N}
HVIN

» As we expected, most of the time, it is not possible ’ _._
N N

Train Station 1D
SR o

—
D

to use a model trained on a specific station, as a

surrogate for different multiple station, since the 1 L

MAE is not acceptable

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Test Station 1D
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Target: NO, concentration

Resu |tS — Local = TiDE 0 P T U N n Past Covariates: Traffic Data + Calendar

Future Covariates: Meteorological Data + Calendar

[ Hyperparameter Search ]

» Since TiDE is a local model, it is preferable to carry out study for each station (model), or a subset of them
» For the sake of brevity, here we only report the parameter importance study, but we have plenty of results, from

convergence study, to objective value rank, and so on

Hyperparameter Importances

B Objective Value

8

num encoder layers

5

temporal width future

num decoder layers

use layer norm

2 temporal decoder hidden

8

use reversible instance norm

dropout

_W
-m

temporal width past

hidden size

decoder output dim

5}

0.200

R

00 0.025 0.050 0.075 0.100 0.125 0.15
perpar

Hyperparameter Importance

0.C
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Results - Global — Graph Neural Network

Target: NO, concentration
Past Covariates: Traffic Data + Calendar

[ Network Comparison ]

Future Covariates: Meteorological Data + Calendar

» We compare the performance of multiple GNN-based (global) forecasting architecture and the previous TiDE (/ocal) model

» The MAE value is the mean value among all the stations of the observation network

Graph Warve N e | e

A CTR )\ - N ) —
AN N A N I

Gated G N |

Network

T, - R R R R —
./ ' | | | |

MACGCT\ - N E R— —
' | |

0 2 4 6 8 10 12
MAE

» As we can see, our MAGCRN outperforms all the selected state-of-the-art DL-based forecasting models
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Target: NO, concentration

ReS u |tS . Global . Graph Neural Network Past Covariates: Traffic Data + Calendar

Future Covariates: Meteorological Data + Calendar

[ Forecasting Horizons Effectiveness ]

» Until now, we considered the performance for only one forecasting horizon, i.e., predicting the 0-24h (1-day ahead)
» Here we report the results of the MAGCRN in forecasting NO, 1-day (0-24h), 2-day (25-48h) and 3-day (49-72h) ahead

» In blue we report the MAE of the MAGCRN trained in B /o Horizon Retraining
predicting 1-day ahead NO, by using the data referred o = w/ Horizon Retraining
to previous day (1-day before). Then, with the same
training we infer the 2 and 3-day ahead NO,

» We can notice that more distant forecasting horizons 5
bring to an appreciable decrease in performance

MAE
D

» In green we report the MAE of 3 different MAGCRN
trainings, each one specialized in predicting (from left to
right) 1, 2 or 3 day ahead values respectively, by using
the values referred only to previous day (1-day before).

» As we expected, having 3 different models, one for each
forecasting horizon, benefits the performance (near-
equal MAE among all the horizons), at the expense of 0- s 0.7
higher computational cost (3 different trainings) Forecasting Horizon

DO
)
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Target: NO, concentration

Past Covariates: Traffic Data + Calendar

Results — Global — Graph Neural Network . .
Future Covariates: Meteorological Data + Calendar

[ Complexity Consideration ]

» For all the experiments, we considered the meteorological data only as a future covariates (blue bars)

Graph WaveNet N I O A N
I I I —

ACCRN I s B
AN I I I m—

Cated CNN I
- ! ' | |

o1 I I I R
I S S S

I R R D

Network

0.0 2.5 5.0 7.5 10.0 12.5
MAE
B Meteo as Fut. Cov. B Meteo as Past and Fut. Cov.

» Using the meteorological variables also as a past covariates (green bars) compromises the performance of all the

considered models
» We believe that the models' ability to consider additional information is limited, and more information does not always

lead to a better result
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Results - Model’s Resource Consumption

[ Training Time J
» TiDE model (local): GPU: = 10 min." CPU: = 30 min. * * for single station
» MAGCRN model (global): GPU: = 15 min. CPU: =3 h

[ Memory Consumption J

[ Reference Workstation Specification )
» TiDE model (local): ~1GiB”
CPU: Intel Xeon Gold 6246, 48 Cores @ 3.3 GHz
GPU: Titan RTX (4608 CUDAs @ 1350MHz, 24 GiB)
» MAGCRN model (global): ~ 8 GiB RAM: 252 GiB

- J
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Target: NO, concentration

ReS u |tS . Global . Graph Neural Network Past Covariates: Traffic Data + Calendar

Future Covariates: Meteorological Data + Calendar

[ Range Effectiveness ]

» We study the effectiveness of our MAGCRN on 4 non-overlapping contiguous NO, concentration ranges

024 Occurrences ~200,000k
25- B 25-48
» The blue, green and violet bars denotes the 3 4972 175,000k
different forecasting horizons
20- -150,000k
» The denotes the number of values (occurrences) -125,000k
within the considered range, and are different for each 5
forecasting horizon, i.e., higher values are only a few g ~100,000k
-75,000k
10-
» We can observe a performance drop when the NO,
concentration values are high, since we do not have U000k
sufficient training samples of this dynamic, i.e., as you 5
can see from the number of occurrences o
-0k

30-60
Value Range
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Target: NO, concentration

ReS u |tS . Global . Graph Neural Network Past Covariates: Traffic Data + Calendar

Future Covariates: Meteorological Data + Calendar

[ Learning a }

Learned A Learned A Mixed Learned A
from Past Covariates from Future Covariates from Past&Fut. Covariates
o
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Target: NO, concentration

Tra | N | N g Deta | |S - Degign Choice Past Covariates: Traffic Data + Calendar

Future Covariates: Meteorological Data + Calendar

[ Window Pairs Construction ]

——— WINDOW  ————f— DELAY —— HORIZON —of
0 1 2 3 4 5 6 7 8 9 |10 11 | 12 13 @ 14

[ SAMPLE SPAN i

— STRIDE — NEXT WINDOW

Image courtesy of Torch Spatiotemporal https://github.com/TorchSpatiotemporal/ts|
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