

XI giornata sulla modellistica in aria(net) Milano, 11 aprile 2024

MaL-Air [Machine Learning for Air]

Data fusion con metodi Machine Learning

Esempio di Applicazione sull'area urbana torinese

Umberto Giuriato, Alessandro D'Ausilio, Camillo Silibello

Data Fusion and Downscaling of Air Quality Deterministic models in the Turin area with Random Forest

<u>U. Giuriato¹</u>, A. D'Ausilio¹, C. Silibello¹, R. De Maria², S. Bande², C. Cascone², M. Maringo²

¹ARIANET srl, 20159 Milano, Via Benigno Crespi 57, Italy. ²ARPA Piemonte, Regional Environmental Protection Agency of Piemonte, 10135 Torino, Italy.

14th International Conference on Air Quality - Science and Application *Helsinki. 13 May - 17 May 2024*

Introduction and motivation

Supervised learning can be successfully employed to spatialize concentrations measured by an *observation network*

CTMs concentration fields play the role of **predictors**, allowing the **data fusion** between deterministic models and actual observations

The combination with other High-Resolution predictors leads to the *downscaling* of concentration maps

A large and *representative sensor network* is fundamental to improve the learning process and enhance *generalization capabilities*

Since in real-case scenarios this is not always the case, we need to engineer a way to

- increase the representativeness of training set
 - quantify the uncertanties

MaL-Air [Machine Learning for Air]

Preprocess outside MaL-Air:

- Observations csv: station concentration time series in any time aggregation
- Predictors netcdf:
 - FARM simulations
 - LAI
 - Land use
 - Other static predictors

MAL-Aria The ARIANET solution for data fusion with supervised learning MaL-Air temperature precipitation

MAL-Air pre-processor:

- Extract predictors at the station locations
- · Resample predictors and observations to target time aggregation
- Combine predictors and observations in the training dataset
- Feature Engineering for manipulation of variables

CONDA Leaven Xarray

MAL-Air core:

Base Model class containing all methods for ML models

- Performs ML tasks
 - Training
 - Inference
 - Validation
 - Hyperparameters tuning

The app is modular!

Since supervised learning tasks all require a matrix predictors X samples, every new model implemented could be a class inheriting the main attributes and methods from a base class

MAL-Air support analysis tool:

- Principal Component Analysis and clustering for outlier detection
- Correlation maps •
- ADF Test

A Pydantic

- Joint plots
- Distributions •
- Coverage score

Supervised training with Random Forest

- Training is performed on the monitoring station time series.
- The trained **Random Forest** model is then applied to each cell of the domain for each day to *infer concentration maps*

Supervised training with Random Forest

- Training is performed on the monitoring station time series.
- The trained **Random Forest** model is then applied to each cell of the domain for each day to *infer concentration maps*

Supervised training with Random Forest

- Training is performed on the monitoring station time series.
- The trained **Random Forest** model is then applied to each cell of the domain for each day to *infer concentration maps*

Use case: SPoTT project

Surveillance on POpulation health around the Turin waste-ofenergy plant

- Pollutants under study: PM10 and PM2.5
- Year of study: **2019**
- Target resolution: **200m**
- **14** monitoring stations
 - 8 measure PM25, 13 measure PM10
 - Majority of *urban* stations, just 2 *rural* stations

Nome Stazione	PM ₁₀	PM _{2.5}
Baldissero T. (ACEA)	•	
Beinasco TRM – Aldo Mei	•	•
Borgaro T Caduti	٠	•
Carmagnola	•	
Chieri - Bersezio		•
Collegno - Francia	•	
Druento – Parco la Mandria	•	
Leini (ACEA) - Grande Torino	•	•
Settimo T Vivaldi	•	•
Torino Consolata	•	
Torino Grassi	•	
Torino Lingotto	•	•
Torino Rebaudengo	•	•
Torino Rubino	•	•

Use case: SPoTT project

Surveillance on POpulation health around the Turin waste-ofenergy plant

- Pollutants under study: PM10 and PM2.5
- Year of study: **2019**
- Target resolution: **200m**
- **14** monitoring stations
 - 8 measure PM25, 13 measure PM10
 - Majority of *urban* stations, just 2 *rural* stations

Nome Stazione	PM ₁₀	PM _{2.5}
Baldissero T. (ACEA)	٠	
Beinasco TRM – Aldo Mei	•	•
Borgaro T Caduti	•	•
Carmagnola	٠	
Chieri - Bersezio		•
Collegno - Francia	٠	
Druento – Parco la Mandria	•	
Leini (ACEA) - Grande Torino	•	•
Settimo T Vivaldi	•	•
Torino Consolata	•	
Torino Grassi	•	
Torino Lingotto	•	•
Torino Rebaudengo	•	•
Torino Rubino	•	•

Spatio-temporal Predictors: FARM and Leaf Area Index

FARM: NO₂ – daily mean

FARM simulations have been performed on the domain of interest at the resolution of **1km**

Leaf Area Index satellite images are monthly sampled at the resolution of 200m

Stationary (Spatial) Predictors

All the stationary predictors are at 200m resolution

2000

1750

1500

1250

1000 ¥S

750

500

250

Impervious Surface Area (ISA)

Light at Night (LAN)

Distance Secondary Roads

Distance Primary Roads

Distance Tertiary Roads

UTM-x 32N [m]

Distance Motorways

Stationary (Spatial) Predictors: Corine Land Cover

PM₁₀ annual mean concentration

sin day of week

0.01

A 🧑 SUE2 company

PM₁₀ annual mean concentration

- Globally, Random Forest inference *fixes the bias* of FARM predictions with respect to observations
- Downscaling due to stationary predictors is an increment of concentration on roads at the local scale

Data augmentation: imputing PM_{2.5} time series

•

•

•

Lack of representativeness of observation network

- Only 8 stations measuring PM_{25} ٠
- Lack of rural stations Druento, Baldissero and ٠ some traffic stations in Turin's urban area
- It is possible to increase the training set size for PM_{25} by learning information from PM₁₀ stations
- Preliminary random forest model (RF_{st}) is trained ٠ at stations where both species are sampled
- Then it is applied to infer timeseries of the ratio • $PM_{2.5}$ / PM_{10} at stations where only PM_{10} data are available

$$\frac{PM_{2.5,obs}}{PM_{10,obs}} \sim RF_{st} \left(PM10_{obs}, \frac{PM_{2.5,FARM}}{PM_{10,FARM}} \right)$$

Using PM_{25} / PM_{10} as target forbids unphysical values with $PM_{25} > PM_{10}$

Stafoggia M, Johansson C, Glantz P, Renzi M, Shtein A, de Hoogh K, Kloog I, Davoli M, Michelozzi P, Bellander T. A Random Forest Approach to Estimate Daily Particulate Matter, Nitrogen Dioxide, and Ozone at Fine Spatial Resolution in Sweden. Atmosphere. 2020; 11(3):239. https://doi.org/10.3390/atmos11030239

Data augmentation: imputing PM_{2.5} time series

The "surrogate" PM_{2.5} observation time series are highly correlated with PM₁₀ ones, with small variability in their ratio

PM_{2.5} annual mean concentration

Random Forest WITH augmented data

Random Forest WITHOUT augmented data

Augmenting data based on FARM PM ratio and PM₁₀ observations:

- Thins out the difference with FARM field, still healing the bias
- Keeps similarity with PM₁₀ map, without concentration increase outside urban area

BONUS: Coverage Score

A **Coverage Score** can be defined to quantify how much the predictors' distribution in the target domain matches the one *"seen"* by the observation network.

In every cell ij:
$$C_{ij} = \sum_{k=1}^{N_{\text{predictors}}} \operatorname{importance}_k \cdot Q_{ij}$$

Where Q_{ij} is:
- 1 if the values belong to the distribution sampled by the observation network
- 0 otherwise

Distribution of FARM PM10 values (stations vs all cells)

BONUS: Coverage Score for PM_{2.5}

Mean Coverage map for PM_{2.5} WITHOUT augmented data

Adding the "surrogate" stations improves the coverage in regions outside Turin, increasing the reliability of the model.

Thank you for your attention !

Camillo Silibello

Nested K-fold cross validation

Validation of the Random Forest training is performed with a K-fold nested cross-validation

The evaluation metric used is **RMSE**

- Split dataset into K equal folds
- One fold is used as test set and K-1 remaining as training
 - In each inner training fold, perform an extra Kfold splitting and use it to perform
 hyperparameter tuning
- Train the model on the training set for each iteration independently
- Validate the model on the test set for each iteration
- The final score is the average obtained from all K iterations to get the final score

PM_{2.5} annual mean concentration

Feature importances

	Importanco	Cumulative	
Feature	/0/)	importance	
	(70)	(%)	
sin julian day	0.25	0.25	
cos julian day	0.23	0.48	
FARM O3	<mark>0.22</mark>	0.70	
FARM PM25	<mark>0.12</mark>	0.82	
FARM NO2	<mark>0.03</mark>	0.85	
cos day of week	0.02	0.87	
Leaf Area Index	0.02	0.89	
Dist primary roads	0.01	0.90	
Elevation	0.01	0.91	
Population	0.01	0.92	
sin day of week	0.01	0.93	
Dist second roads	0.01	0.94	

Hyperparameters

Hyperparameter	Value
N_trees	400
Max depth	30
Min samples split	2
Min samples leaf	2
Max features	0.85
Max leaf nodes	700

Cross-validation RMSE

Model	Value
FARM	$\textbf{14.0} \pm \textbf{0.64}$
Random Forest	$\textbf{5.9} \pm \textbf{0.52}$

