Milan Air Quality observations and Lessons Learnt from COVID lockdown

<u>Silvia Moroni, PhD</u> Paolo Palomba

AMAT - Agenzia Mobilità Ambiente e Territorio, City of Milan

IX Giornata sulla Modellistica in ARIA(NET)

Milano, May 6th, 2022

Milan, an inclusive city

Actions to reduce sources of air pollution and get citizens to adopt aware lifestyles

1.4 million

inhabitants

7,518

Inh./km2

800,000

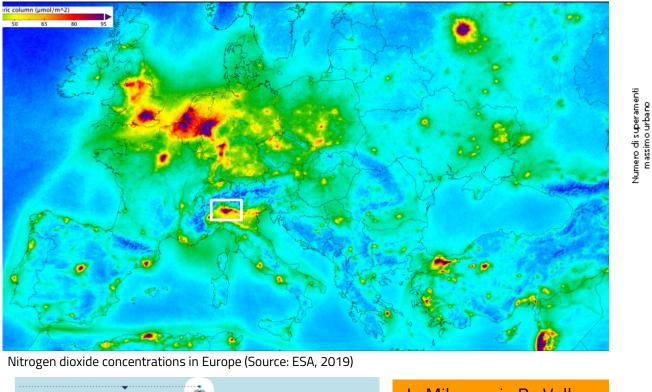
Commuters/day

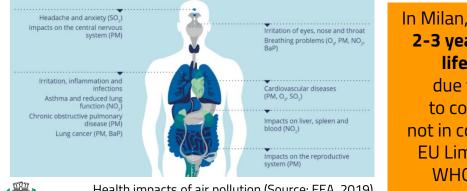
6,8 millions

3,1 tonnes/capita

Tourists in 2018 (ISTAT)

GHG in 2020

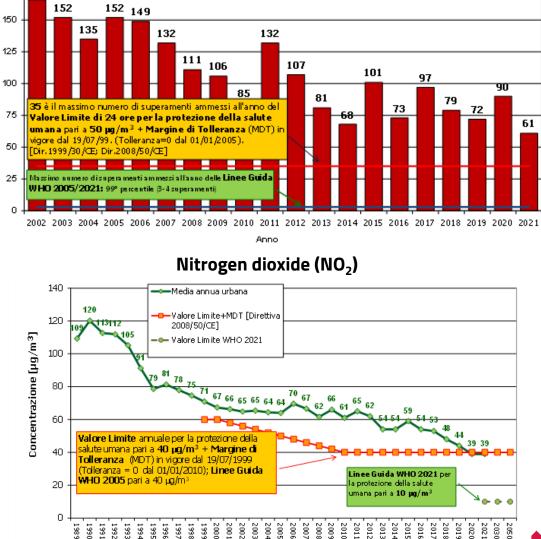




Air quality is one of the most important **environmental and health** issues for the City of Milan - together with the whole Po Valley affected by strong unfavorable meteorological conditions

Air Quality in Milan

PM10 - Annual Number of exceedances days



Comune di Milano

Health impacts of air pollution (Source: EEA, 2019)

In Milan, as in Po Valley, 2-3 years of years of life lost / inh. due to exposure to concentrations not in compliance with EU Limit Values and WHO Guidelines

Silvia Moroni, IX Giornata sulla Modellistica in ARIA(NET) - Milano, May 6th, 2022 (Source: AMAT on Arpa Lombardy data, 2022)

175 T166

Milan: Air Quality and Climate Challenges

Source: AMAT data processing on Arpa Lombardia data

+2°C Average Annual Temperature (1901-2017)

over 2°C _ Summer over 1°C _ Winter

Projection to 2050 of the maximum and minimum temperature increase

Source: Profile Climatico Locale, Arpa Lombardia e Arpa Emilia Romagna, Comune di Milano

The City Council declared a Climate and Environmental Emergency in May 2019

Milan Air Quality and Climate Plan

City Council Resolution no. 4 of February 21, 2022

Integrated approach

\rightarrow <u>Air Quality Goals</u>:

Short term

 ✓ By 2021 fix an AQ strategy for compliance with WHO Guidelines for all pollutants on long term

Targets

Medium Term

 ✓ By 2025 compliance with EU AQ Limit Values for PM10, PM2.5 and NO₂

Long Term

- ✓ **By 2050** approach WHO AQ Guidelines
- → <u>Climate Change Goals</u>:
- ✓ By 2030 -45% CO₂ emissions vs 2005
- ✓ **By 2050** Carbon neutrality Silvia Moroni, IX Giornata sulla Modellistica in ARIA(NET) - Milano, May 6th, 2022

Air Quality and Climate Plan

Vision to 2050, for a **City of Milan**:

Healthy and Inclusive Milan: a healthier, safer and more equitable City.

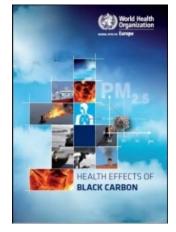
Connected and highly accessible Milan: a well connected and flexible City, with smooth and sustainable mobility

Positive Energy Milan: a City that consumes less and consumes energy better

4 Cool Milan: a greener city, cooler and liveable, which adapts to climate change

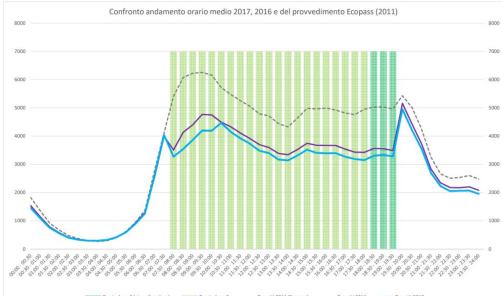
Aware Citizens: a City which adopts an aware and sustainable lifestyle

Air Quality and Climate Plan 2. Connected and highly accessible Milan


Vision 2050: transform personal mobility in active mobility giving priority to bicycles and pedestrians.

Goal 2030: highly reduce motorised private traffic

- 1. Strengthening existing LEZs (Low Emission Zone) to reduce air emissions
- 2. Planning actions and agreements for sustainable mobility (promote sharing at urban scale, policy for public transport, etc)
- 3. Setting a Zero Emissions Zone
- 4. Implementing a Carbon-neutral area



Pilot project: - 52% Black Carbon concentrations inside Area C

Starting from October 1st, 2021 Area B is fully coordinated with the **MoVe-In** Lombardy Region initiative

Limited Traffic Zones in Milan 'Area C': the Milan Congestion Charge

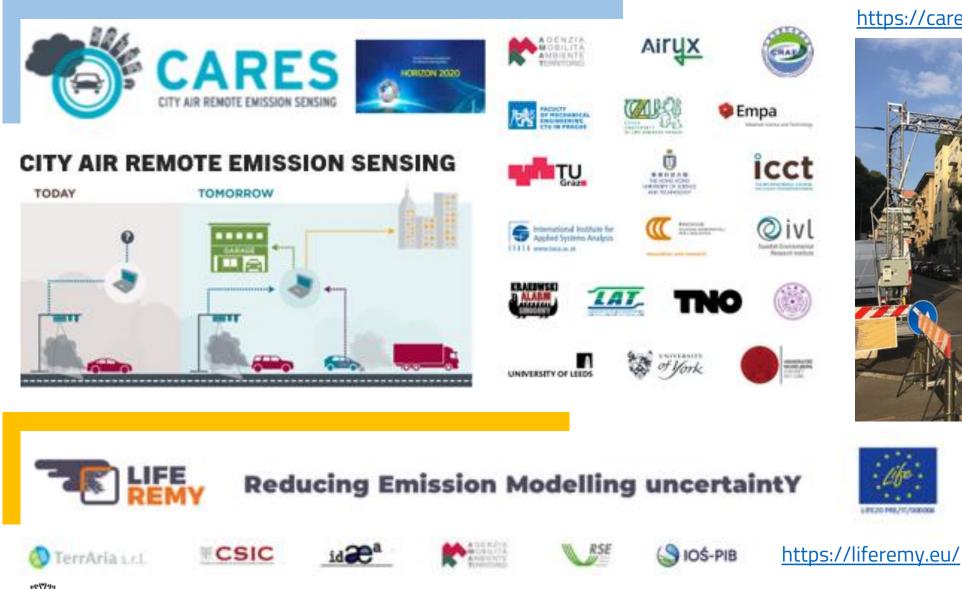
-30% traffic; -28% road accidents -49% most polluting vehicles

-19% PM₁₀ exhaust emissions -10% NO_x emissions

-22% $\rm CO_2$ emissions

ZONA A TRAFFICO LIMITATO

'Area B': the Milan Low Emission Zone


- 50% PM₁₀ exhaust emissions
 - within 4 years
- 50% NO_x traffic emissions

within 10 years

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 0% -5% -10% -15% -20% -25%

European co-funded projects

Comune di Milano

https://cares-project.eu/

Lesson learned from Covid-19 lockdown in Milan

Results from two studies on Covid-19 lockdown in Milan

The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM_{2.5} in the metropolitan area of Milan, Italy

Abdulmalik Altuwayjiri^a, Ehsan Soleimanian^a, Silvia Moroni^b, Paolo Palomba^b, Alessandro Borgini^{c,d}, Cinzia De Marco^{c,d}, Ario A. Ruprecht^d, Constantinos Sioutas^{a,*}

^a University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA

^b Agenzia Mobilità Ambiente e Territorio - AMAT srl, Mobility, Environment and Territory Agency, Milan, Italy

^c Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy

^d Associazione Medici per l'Ambiente ISDE Italia, International Society of Doctors for the Environment (ISDE), Italy

0
N
0
N
U
5

[🖨

-37%

-46%

-42%

-19%

-21%

-29%

-24%

-35%

-53%

-70%

8

Parcheggio di interscambio

-75%

-48%

-52%

-55%

-56%

-57%

-77%

-77%

93%

-86%

-90%

-93%

-94%

-98%

-99%

-96%

-97%

-97%

-98%

-97%

-98%

-99%

-98%

-98%

-98%

-98%

-98%

-99%

-99%

-98%

-85%

Variazione degli spostamenti oro -10% +10% Metropolitana Indice di congestione Area B Area C Car Sharing **Bike Sharing** Scooter Sharing Monopattini Sharing Sosta su strada Febbraio/Marzo 29 sabato -57% -50% -22% -26% -13% -62% -43% -61% N -16% -51% -22% -23% -46% 1 domenica -65% -71% -51% 2 luned) -51% -19% -16% -2.7% +10% -86% -68% -86% Σ -50% -26% 3 martedi -33% -12% -29% -50% -30% -9% -51% -38% -13% -31% -15% -55% -23% -15% 4 mercoled) -53% -36% -15% -31% -3% -76% -53% -17% 5 giovedì 6 venerdì -55% 47% -15% -35% -11% -55% -37% -47% Marzo -29% -19% -42% 7 sabato -59% -48% -37% -14% -43% N 8 domenica -74% -56% -27% 46% -33% -52% 49% 49% -76% -26% -31% -42% 9 lunedì -71% -53% -35% -71% -52% reduction Settim -44% -78% -61% -35% -50% -81% -63% 82% 10 martedì 11 mercoledì -82% -67% -46% -51% 63% -73% -67% -78% -77% 12 giovedì -87% -76% -54% -61% -73% -85% -81% -88% -85% -89% 13 venerdì -89% -75% -59% -63% -78% -84% Marzo 14 sabato -92% -63% -70% -81% -88% -88% -96% -84% -88% 15 domenica -94% -63% -78% -84% -93% -82% 16 lunedì -91% -75% 62% -80% -86% -63% -88% Settim -86% -92% -66% 66% 81% -93% 17 martedi -73% -90% -86% 18 mercoledì -92% -75% -69% -67% -84% -90% -91% -83% -87% 19 giovedì -93% -75% -67% -91% -86% -88% 20 venerdì -93% -66% -85% -91% -75% -69% -91% Marzo U raffi -94% -66% -89% -91% -86% -96% 21 sabato -76% S 22 domenica -96% -58% 84% -95% -95% -90% -95% ana -94% 23 lunedì -75% -73% -84% -95% -89% -92% Settim -95% -74% -72% -87% -95% -92% -95% 24 martedi -95% -93% 25 mercoledi -68% -75% -74% -88% -95% -95% 26 giovedì -95% -75% -74% -89% -95% -95% -96% -95% -88% -95% 27 venerdi -77% -74% -94% -96% Marzo/Aprile 28 sabato -95% -66% -80% -87% -92% -95% -97% 6 -97% 29 domenica -96% -58% -84% -96% -94% -95%

Source: AMAT

Comune of Milano 🖉 Milano

ana

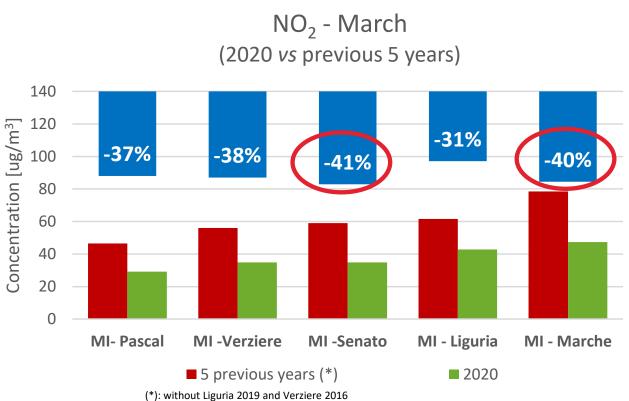
30 lunedì

-94%

-75%

-72%

-85%


94%

-96%

-94%

Nitrogen dioxide (NO₂)

NO₂ - March 2020 (2020 vs previous 5 years) 2015 2016 2017 2018 2019 2020 120 Concentration [ug/m³] 100 80 60 **XX** 40 XХ 20 0 MI- Pascal **MI**-Verziere MI -Senato MI - Liguria MI - Marche

Source: AMAT, 2020, 'COVID-19 LOCKDOWN' ED EFFETTI SULLA QUALITÀ DELL'ARIA A MILANO: ANALISI INTEGRATA DATI QUALITA' DELL'ARIA, METEOROLOGICI E TRAFFICO VEICOLARE in relazione ai provvedimenti relativi alla Emergenza COVID-19'

Nitrogen dioxide (NO₂)

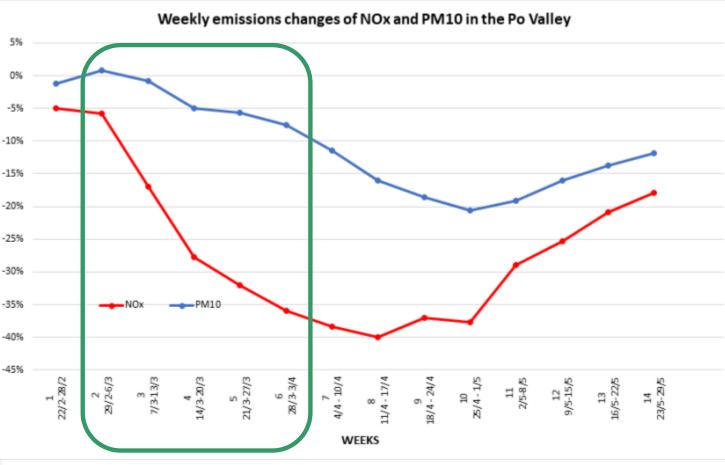


Figure1–Nox and PM10 weekly emission variations (%) in the Po Valley (February 22nd–May 29th2020)

of the LIFE Programme f the European Union

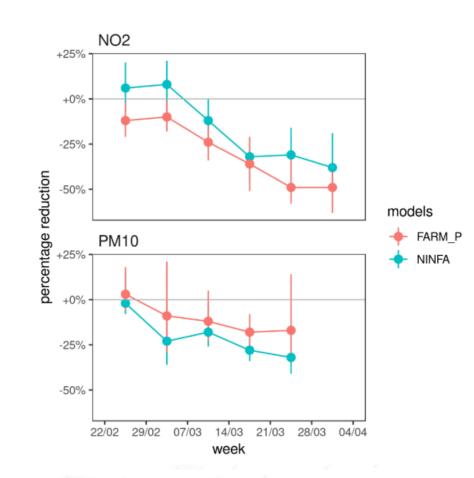
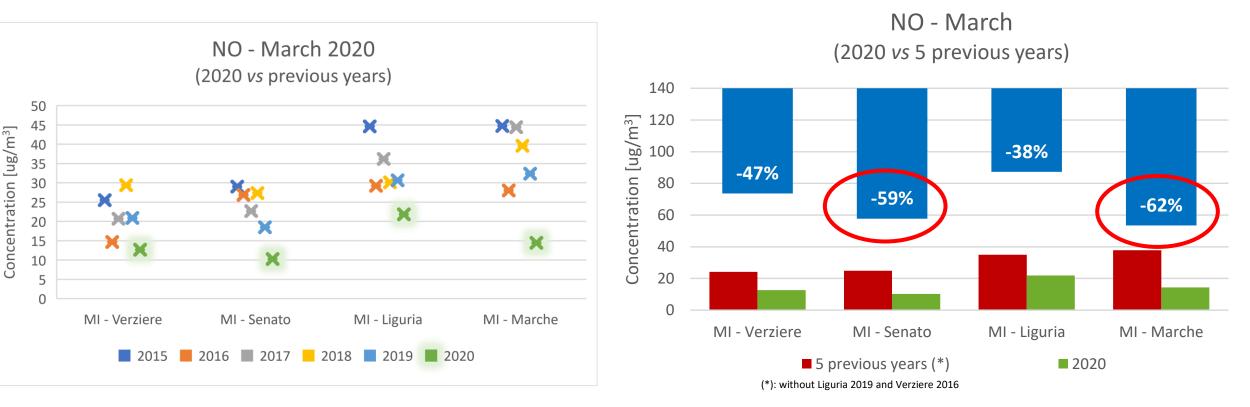


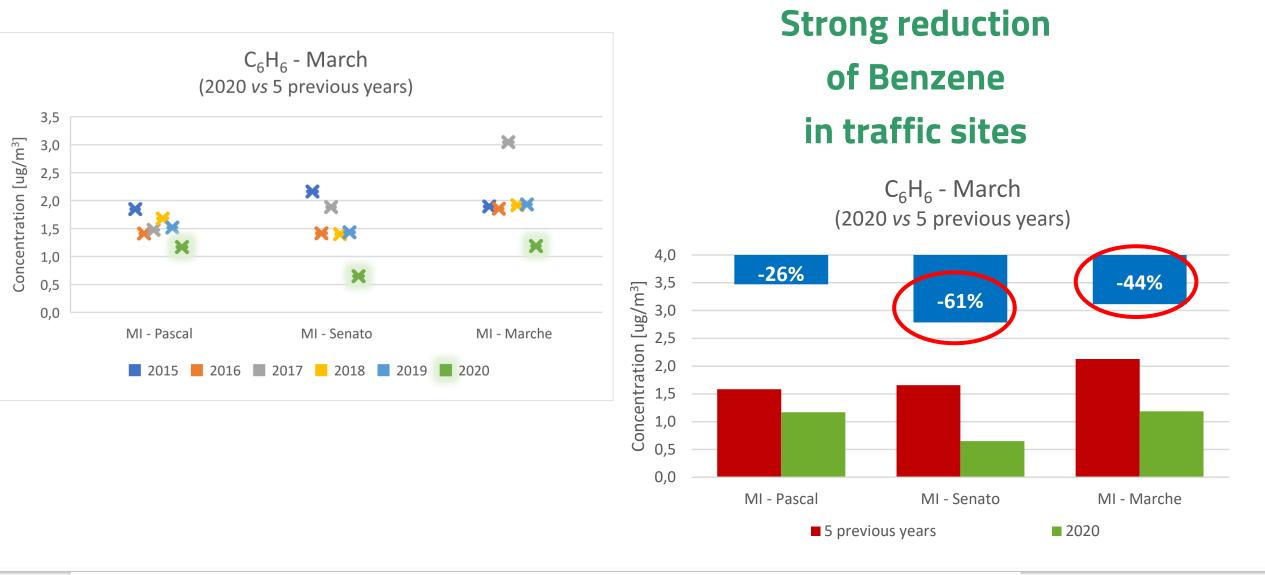
Figure 9 - Percentage reduction between real scenario and "NO-LOCKDOWN" scenario. NO2 above, PM10 below. The trends relating to the FARM_P model are shown in red, and NINFA in blue.



Source: PrepAir Project, 2020, 'Report 2 Covid-19 and air quality in the Po Valley Disclosure summary from January to May 2020'

Nitrogen Monoxide (NO)

NO, a 'primary' pollutant decreased more than NO₂



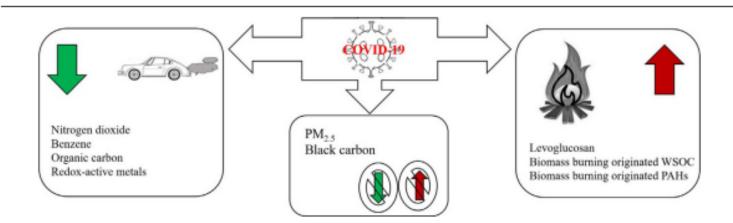
Source: AMAT, 2020, 'COVID-19 LOCKDOWN' ED EFFETTI SULLA QUALITÀ DELL'ARIA A MILANO: ANALISI INTEGRATA DATI QUALITA' DELL'ARIA, METEOROLOGICI E TRAFFICO VEICOLARE in relazione ai provvedimenti relativi alla Emergenza COVID-19'

Benzene (C₆H₆)

Source: AMAT, 2020, 'COVID-19 LOCKDOWN' ED EFFETTI SULLA QUALITÀ DELL'ARIA A MILANO: ANALISI INTEGRATA DATI QUALITA' DELL'ARIA,

Contents lists available at ScienceDirect

Science of the Total Environment


Covid Lockdown impacts on other pollutants The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM_{2.5} in the metropolitan area of Milan, Italy

Abdulmalik Altuwayjiri^a, Ehsan Soleimanian^a, Silvia Moroni^b, Paolo Palomba^b, Alessandro Borgini^{c,d}, Cinzia De Marco^{c,d}, Ario A. Ruprecht^d, Constantinos Sioutas^{a,*}

^a University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
^b Agenzia Mobilità Ambiente e Territorio - AMAT srl, Mobility, Environment and Territory Agency, Milan, Italy
^c Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy

^d Associazione Medici per l'Ambiente ISDE Italia, International Society of Doctors for the Environment (ISDE), Italy

GRAPHICAL ABSTRACT

Source: A. Altuwayjiri, E. Soleimanian, S. Moroni, *et al.*, *The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM2.5 in the metropolitan area of Milan, Italy*, Science of the Total Environment, <u>https://doi.org/10.1016/j.scitotenv.2020.143582</u>

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Total Environment

The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient $PM_{2.5}$ in the metropolitan area of Milan, Italy

Covid Lockdown impacts on other pollutants

Comune a Milano

MAIN GOAL:

- to characterize changes in components and toxicological properties of PM2.5 during the nationwide 2019-Coronavirus (COVID-19) lockdown restrictions in Milan
- > analysis of **gaseous pollutants trend**

METHODOLOGY:

- Time-integrated PM2.5 filters were collected at a residential site in Milan metropolitan area from April 11th to June 3rd at 2020;
- ✓ pollutants determination: EC/OC, water-soluble organic carbon (WSOC), individual organic species (e.g., polycyclic aromatic hydrocarbons (PAHs), and levoglucosan), and metals;
- ✓ institutional network data elaboration for gaseous pollutants

Source: A. Altuwayjiri, E. Soleimanian, S. Moroni, *et al.*, *The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM2.5 in the metropolitan area of Milan, Italy*, Science of the Total Environment, <u>https://doi.org/10.1016/j.scitotenv.2020.143582</u>

The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient $\rm PM_{2.5}$ in the metropolitan area of Milan, Italy

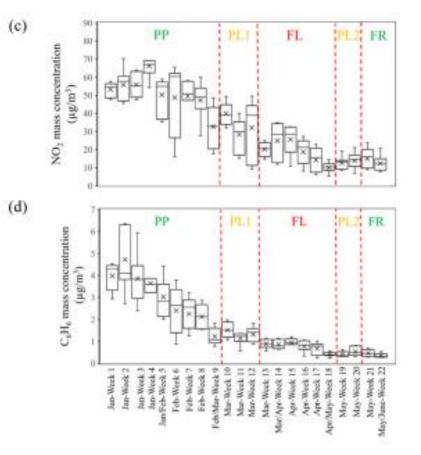


Fig. 1. Temporal trends in the concentrations of (a) PM_{2.5}; (b) BC; (c) NO₂; and (d) C₆H₆ from January 2020 to early-June 2020. Each box plot corresponds to the period of one week during pre-pandemic (PP), full-lockdown (FL), partial-lockdowns (PL1 and PL2), and full-relaxation (FR).

MAIN FINDINGS

Nitrogen dioxide (**NO**₂) and benzene (**C**₆**H**₆) levels **significantly decreased** during the entire COVID-19 period compared to the same time span in 2019, mainly due to the government-backed **shutdowns** and **curtailed road traffic;**

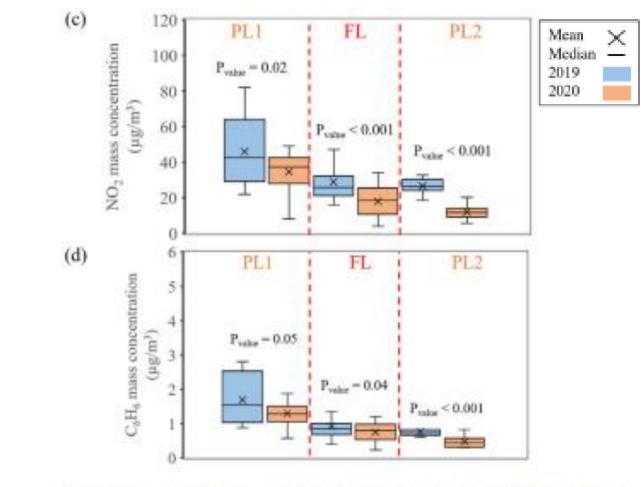


Fig. 2. Temporal trends in the concentrations of (a) PM_{2.5}; (b) BC; (c) NO₂; and (d) C₆H₆ during lockdown phase (i.e., PL1, FL, and PL2) of 2020 and the corresponding period in 2019.

Source: A. Altuwayjiri, E. Soleimanian, S. Moroni, et al., The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM2.5 in the metropolitan area of Milan, Italy, Science of the Total Environment,

https://doi.org/10.1016/j.scitotenv.2020.143582

The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient $\rm PM_{2.5}$ in the metropolitan area of Milan, Italy

and full-relaxation (FR).

Comune de Milano

2.

In contrast, **comparable concentrations of ambient PM2.5 and black carbon (BC)** between lockdown period and the same time span in 2019 were attributed to the **interplay between decreased road traffic and elevated domestic biomass burning** as a result of **adopted stay-home strategies**.

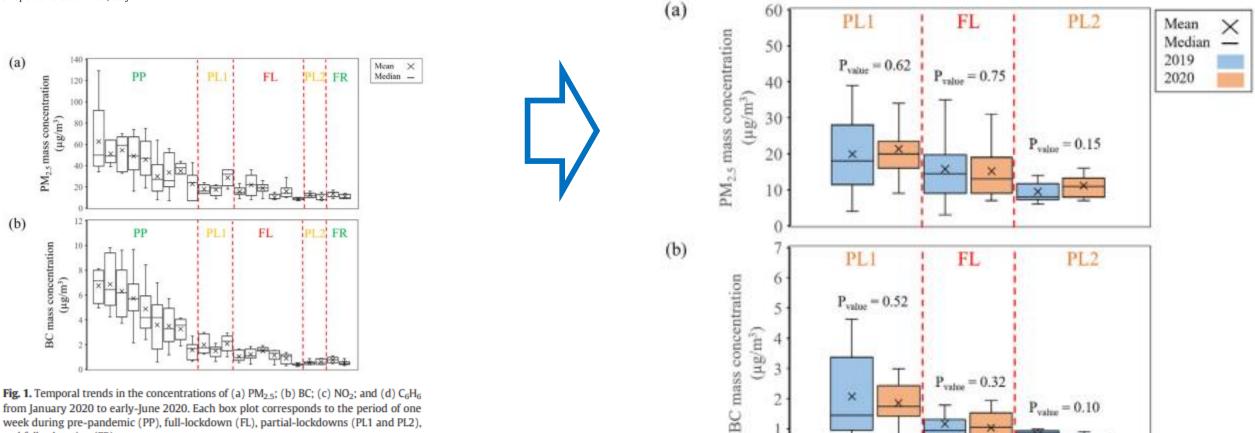


Fig. 2. Temporal trends in the concentrations of (a) PM_{2.5}; (b) BC; (c) NO₂; and (d) C₆H₆ during lockdown phase (i.e., PL1, FL, and PL2) of 2020 and the corresponding period in 2019

Source: A. Altuwayjiri, E. Soleimanian, S. Moroni, *et al.*, *The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM2.5 in the metropolitan area of Milan, Italy*, Science of the Total Environment, https://doi.org/10.1016/j.csitotopy.2020.1/2582

https://doi.org/10.1016/j.scitotenv.2020.143582

The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM_{2.5} in the metropolitan area of Milan, Italy

Contents lists available at ScienceDirect

MAIN FINDINGS

3.

Observing from FL and PL2 to FR period: PM2.5-bound EC, as marker of traffic and biomass burning emissions remained almost constant, in agreement with BC concentrations; PM2.5-bound OC mass concentration increased; likewise ambient WSOC increased by almost 40% from FL and PL2 to FR period.

Covid Lockdown impacts on other pollutants

Normalized VS PM2.5 mass

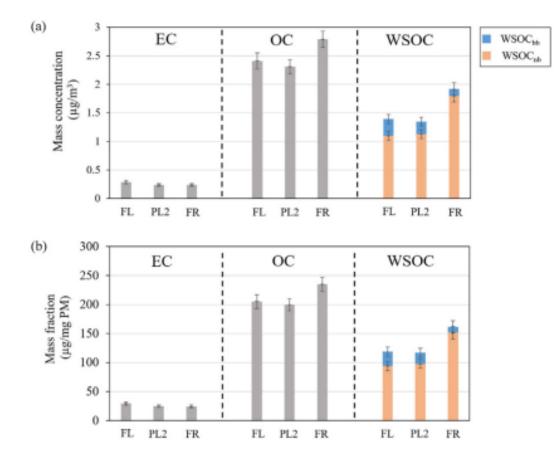


Fig. 6. The elemental carbon (EC), organic carbon (OC), and water-soluble organic carbon (WSOC) fractions of PM2 < during full-lockdown (FL), second partial-lockdown (PL2), and full-relaxation (FR) periods: (a) normalized by the air volume; and (b) normalized by PM_{2.5} mass.

Source: A. Altuwayjiri, E. Soleimanian, S. Moroni, et al., The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM2.5 in the metropolitan area of Milan, Italy, Science of the Total Environment,

https://doi.org/10.1016/j.scitotenv.2020.143582

The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM_{2.5} in the metropolitan area of Milan, Italy

Contents lists available at ScienceDirect

Science of the Total Environment

MAIN FINDINGS

Increasing trend in mass concentration of surrogates of tailpipe emissions (e.g., traffic-associated PAHs) as well as re-suspended road dust (e.g., Fe, Mn, Cu, Cr, and Ti) was observed from FL (full-lockdown) to PL2 (second partial-lockdown) and FR (full-relaxation with limited restrictions) phases due to the gradual lifting of lockdown restrictions. On the contrary, Levoglucosan, as tracer of biomass burning, decreased.

Covid Lockdown impacts or other pollutants

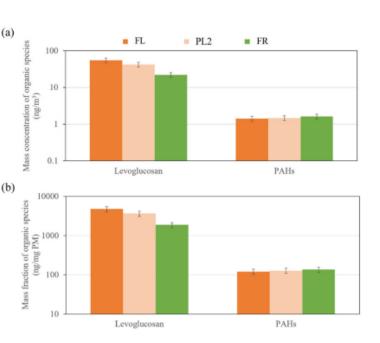
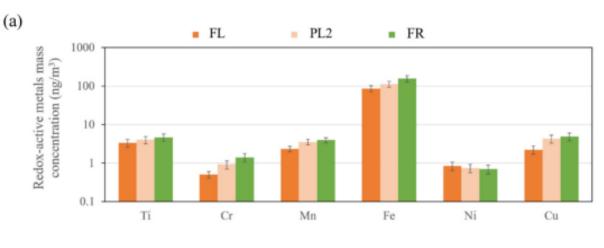



Fig. 7. Temporal trends in levoglucosan and total PAHs concentrations during COVID-19 period normalized by (a) air volume; and (b) PM25 mass content. FL, PL2, and FR refer to full-lockdown, second partial-lockdown, and full-relaxation periods, respectively.

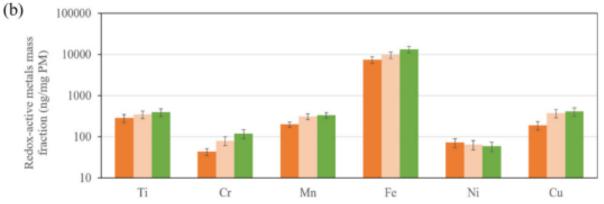


Fig. 8. PM25-bound redox-active metals concentrations measured during full-lockdown (FL), second partial-lockdown (PL2), and full-relaxation (FR) periods: (a) normalized by the air volume; and (b) normalized by PM2.5 mass.

Source: A. Altuwayjiri, E. Soleimanian, S. Moroni, et al., The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM2.5 in the metropolitan area of Milan, Italy, Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2020.143582

Milano

Total Envi

The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient $\rm PM_{2.5}$ in the metropolitan area of Milan, Italy

Covid Lockdown impacts on other pollutants

MAIN FINDINGS

5. The **curtailed road traffic** during **FL** and **PL2** periods led to **~25% drop in the PM2.5 oxidative potential** (measured via 2',7'- dichlorodihydrofluorescein (DCFH) and dithiothreitol (DTT) assays) with respect to the **FR** period as well as the same time span in 2019.

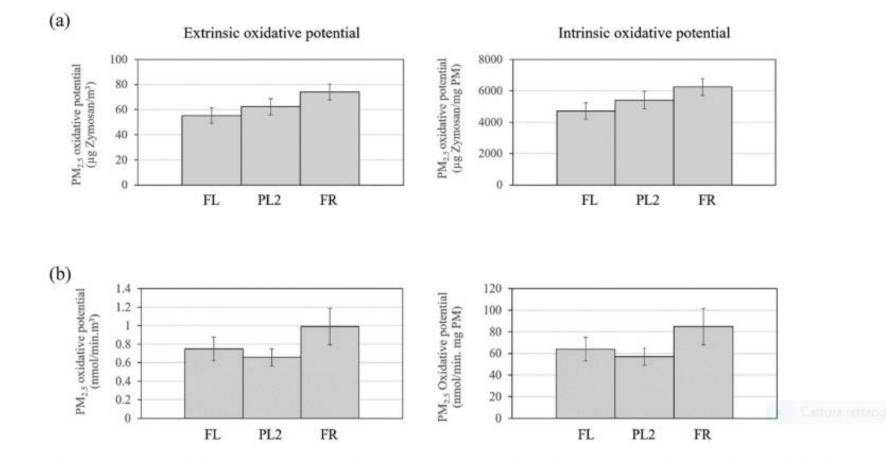


Fig. 9. Air volume-based (extrinsic) and mass-based (intrinsic) oxidative potential of ambient PM_{2.5} during the investigation period measured by the means of (a) DCFH macrophage; and (b) DTT assay (FL: full-lockdown; PL2: second partial-lockdown; FR: full-relaxation).

Source: A. Altuwayjiri, E. Soleimanian, S. Moroni, *et al.*, *The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM2.5 in the metropolitan area of Milan, Italy*, Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2020.143582

Comune & M G E N Z Milano

IX Giornata sulla Modellistica in ARIA(NET)

Milano, May 6th, 2022

Thank you for your attention!

