ARIA Technologies

Indoor air cleaning optimization with modelling

ARIA Technologies SA

8-10, rue de la Ferme – 92100 Boulogne Billancourt – France Telephone: +33 (0)1 46 08 68 60 – Fax: +33 (0)1 41 41 93 17

E-mail: info@aria.fr - http://www.aria.fr

Introduction

- Increasing interest for air depollution systems Indoor depollution easier than outdoor
- Number of depollution systems limited by budget
 Depollution rate limited by the used filtering technology
 Then 3D modelling helps in optimizing the locations and direction of polluted air extraction and clean air outlet
- Emissions inventory are required but complex to establish Concentration measurements on field help to fit the emissions rates

Case #1: Subway station

IP'AIR project by SUEZ in Paris

- 2 depollution systems in Alexandre Dumas station
- 2 field campaigns with mobile sensors by SUEZ
- 1 static reference sensor by RATP

One of the two depollution systems

Field campaigns with mobile sensors

PM measurements at different locations in the station Mean Velocity speed at stations opening Turbulence at different locations in the stations

Location of measurments with mobile devices

Mean observed concentration at different points

Geometry and aeraulic modelling

- Steady state CFD modelling with Code_Saturne : searching for a time averaged picture
 - Wind/turbulence boundary condition from observations
 - Turbulence added for train movement effects

Geometry

Boundary conditions

Concentration and emission

Concentration at boundary conditions from observations Emission rates inside domain: fitting by comparison between observations and model

Concentration field – without depollution systems

Depollution systems setup

Setup choice thanks to model results (and field constrains!)

Chosen Modules setup

Wind field

Concentration field – with depollution systems

Afterward comparison

Measurements after modules installation at different points Verification of modelling approach for next projects!

Case #2 : Gymnasium

- **Project by SUEZ**
- No ventilation system -> Creation of a depollution system
- Used by schools and for Basketball games

School configuration: no people on seats

Game configuration : people on seats

Geometry and mesh

Geometry – Side view

Geometry - Top view

Aeraulic modelling

Aeraulic mainly driven by depollution system

Different tested extraction/outlet configurations

Turbulence added for people movement effect

Unsteady calculation: how long the systems should be on

Emission modelling

Location according to activity

Mass rate by fitting observations and modelling

Turbulence added for people movement effect

Emission in Game configuration

Results for different ventilation configurations

School – mono flux – afterward cleaning

Game – dual flux – Limit pollution peak

Game – tube flux – Limit pollution peak

Questions?