

FARM data assimilation nel sistema previsionale CAMS a scala europea

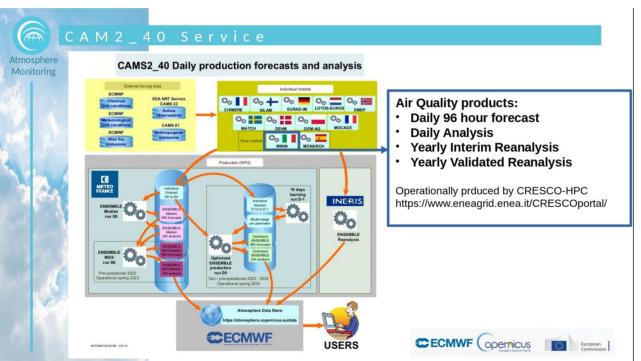
Milano 6/5/2022

Mario Adani¹, Francesco Uboldi²

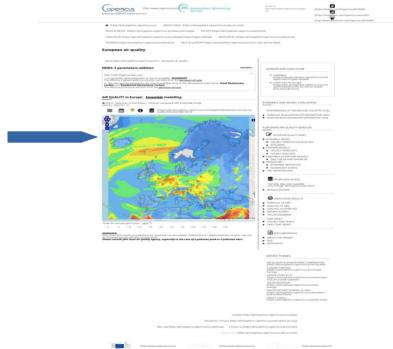
¹ENEA SSPT-MET-INAT, Bologna

² ARIANET, Milano

INDICE



- INTRODUZIONE-CAMS
- SCHEMA DI ASSIMILAZIONE
- SET UP ESPERIMENTO
- RISULTATI
- CONCLUSIONI



INTRODUZIONE

Copernicus Atmosphere Monitoring Services

https://atmosphere.copernicus.eu/

SCHEMA DI ASSIMILAZIONE

Funzione di costo

$$J = \frac{1}{2} d\mathbf{x}^{\mathrm{T}} \mathbf{B}^{-1} d\mathbf{x} + \frac{1}{2} (\mathbf{H} d\mathbf{x} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H} d\mathbf{x} - \mathbf{d})$$

Facendo la derivata e ponendola = 0, l'analisi risulta:

$$\mathbf{x}^a = \mathbf{x}^b + \mathbf{G}(\mathbf{S} + \mathbf{R})^{-1} [\mathbf{y}^o - \mathcal{H}(\mathbf{x}^b)]$$

$$\mathbf{G}_{i,m} = [\mathbf{B} \mathbf{H}^{\mathrm{T}}]_{i,m} = \sigma_{b,i} \sigma_{b,m} \gamma_{i,m}$$

$$\mathbf{S}_{m,k} = [\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}}]_{i,m} = \sigma_{b,m}\sigma_{b,k}\gamma_{m,k}$$

Dove:

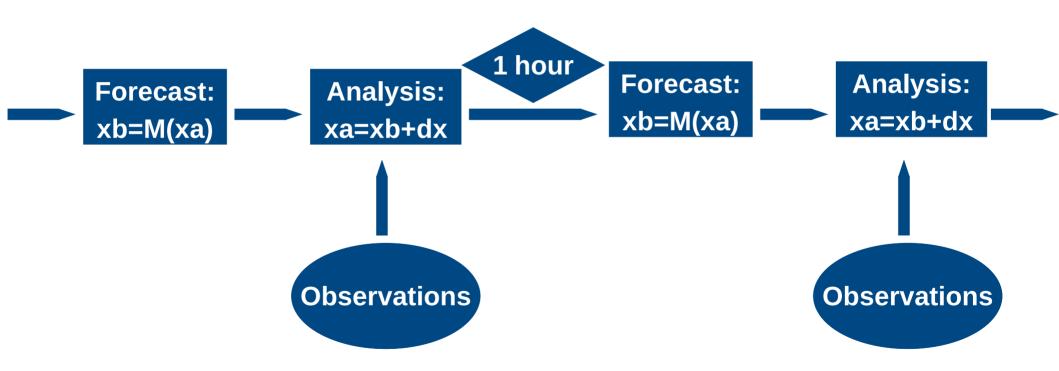
σ = varianza dell'errore
 γ = correlazione (decade con la distanza)
 i = punto griglia modello
 m, k = posizione delle stazioni di misura

DEFINIZIONI

innovazione $\mathbf{d} \equiv \mathbf{y}^o - \mathcal{H}(\mathbf{x}^b)$ incremento $d\mathbf{x} \equiv \mathbf{x}^a - \mathbf{x}^b$

Assumendo che la varianza degli errori non dipenda dallo spazio

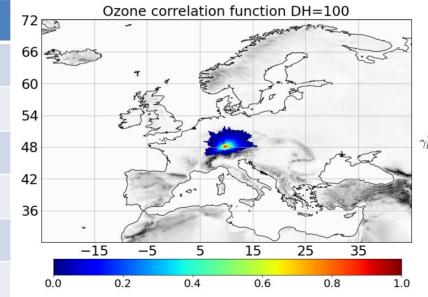
$$\varepsilon^2 = \frac{\sigma_o^2}{\sigma_b^2}$$


$$\widetilde{\mathbf{G}}_{i,m} = \gamma_{i,m}^h$$

$$\tilde{\mathbf{S}}_{m,k} = \gamma_{m,k}^h$$

$$d\mathbf{x}_{l=1} = \widetilde{\mathbf{G}} (\widetilde{\mathbf{S}} + \varepsilon^2 \mathbf{I})^{-1} \mathbf{d}$$

SCHEMA DI ASSIMILAZIONE


SCHEMA DI ASSIMILAZIONE

Scala di decadimento orizzontale (Km) e rapporto delle varianze di errore dell'osservazione e del modello

Correlazione orizzontale: funzione di decadimento esponenziale della distanza terrain-following

Correlazione verticale: va a 0 ad H = Hmix. Cressman fun.

Specie	eps2	DH
NO ₂	0.50	50
O ₃	0.50	110
CO	0.85	30
SO ₂	0.30	30
PM10	0.40	90
PM25	0.40	110

$$\gamma_l^v = \begin{cases} \frac{H_{mix}^2 - (z_l - z_1)^2}{H_{mix}^2 + (z_l - z_1)^2} & z_l \le z_1 + H_{mix} \\ 0 & z > z_1 + H_{mix} \end{cases}$$

SETUP ESPERIMENTO

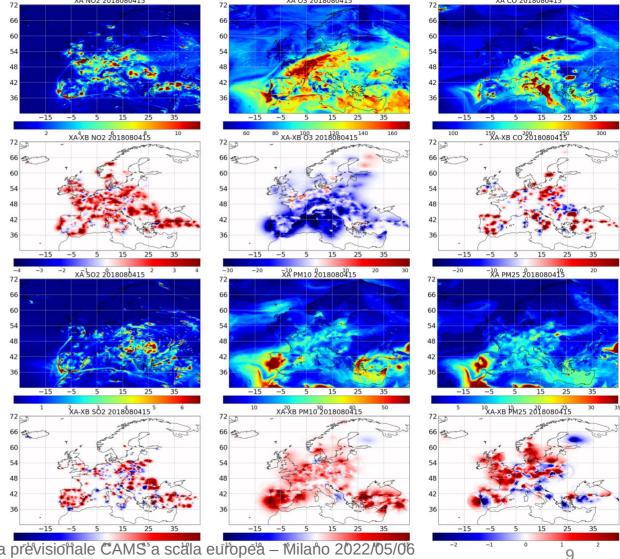
	MINNI-FARM	CAMS-MEMBERS	
EMISSIONI	CAMS-REG-AP_v4.2_ref2.1 (2017)	CAMS-REG-AP_v2.2.1 (2015)	
CONDIZIONI AL CONTORNO	C-IFS	C-IFS	
FORZANTE ATMOSFERICO	IFS (primo giorno di forecast)	IFS (primo giorno di forecast)	
INCENDI	GFAS (media giornaliera)	GFAS (orari)	
TRE ESPERIMENTI PER ANNO 2018 SU DOMINIO EUROPEO: • FREE-RUN • BF • BF-SCT ENER 43 42 43 43 43 43 43 43 44 43 45 46 48 48 48 48 48 48 48 48 48 48 48 48 48	urban rural suburban 66	rural urban 56 urban	

SETUP ESPERIMENTO

CONTROLLO DI QUALITÀ OSSERVAZIONI

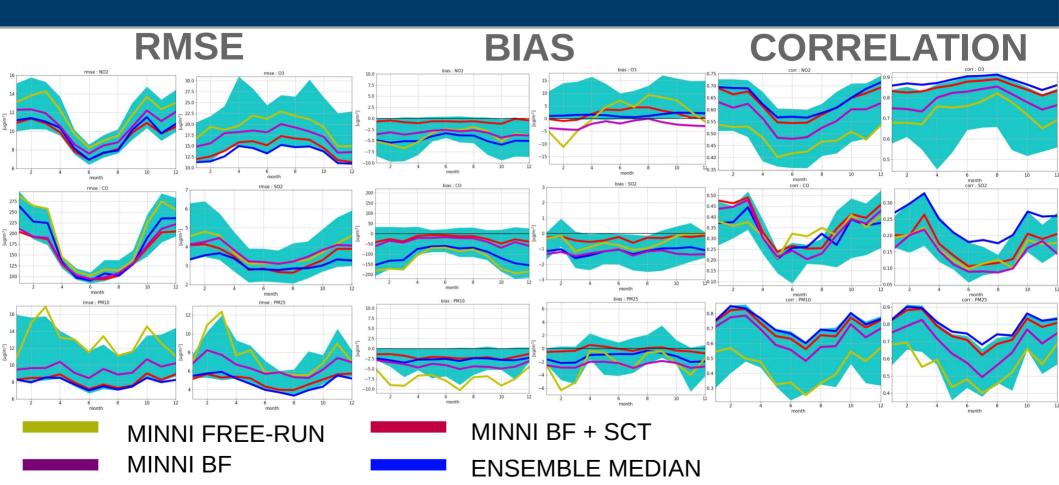
BF scarta osservazioni quando SCT scarta osservazioni quando

|yo -yb| > Soglia BF |yo -ya⁻| > Soglia SCT ya = "cross-validation" analisi


SCT= Spatial Consistency Test*

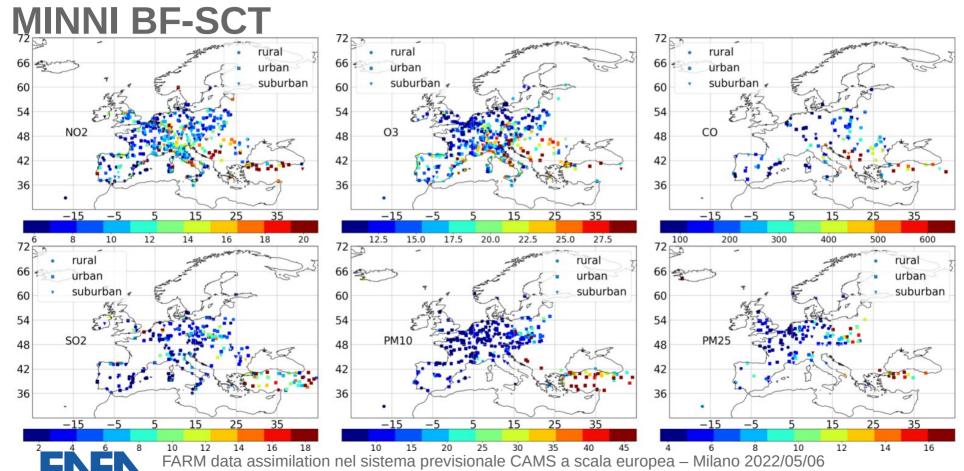
	Soglia BF	Soglia SCT
NO ₂	63.0	43.0
O ₃	79.3	53.0
CO	2159.0	1439.0
SO ₂	30.0	30.0
PM10	130.2	87.0
PM25	55	37.0

*Lussana C, Uboldi F, Salvati MR. 2010. A spatial consistency test for surface observations from mesoscale meteorological networks. Q. J. R. Meteorol. Soc. 136: 1075-1088. DOI:10.1002/qj.622



RISULTATI: CAMPI ANALISI DI **CORRISPETTIVO INCREMENTO**

RISULTATI: MEDIANA FRA STAZIONI



RISULTATI: BF vs BF-SCT

Specie	MINNI-BF			MINNI-SCT		INCREMENTO OSSERVAZIONI	
	BF	SCT	Total	BF	SCT	Total	
NO ₂	24355	0	24355	16838	3298	20136	+17%
O ₃	71461	0	71461	10133	4992	15125	+79%
СО	8736	0	8736	8667	299	8966	-3%
SO ₂	81920	0	81920	77337	18	77395	+6%
PM10	28073	0	28073	24752	432	25184	+10%
PM25	8170	0	8170	5621	332	5953	+27%

RISULTATI: RMSE

CONCLUSIONI

- Un nuovo schema di assimilazione basato su 3dvar/OI è stato introdotto in FARM per assimilare le misure di stazioni al suolo per NO2, O3, CO, SO2, PM10, PM2.5
- Lo schema è ottimizzato per il dominio e la risoluzione di CAMS
- Due controlli di qualità sulle misure sono stati introdotti BF e SCT*
- L'utilizzo di SCT permette di assimilare più osservazioni in quanto l'informazione proveniente dalle osservazioni è propagata meglio dal modello nel ciclo di assimilazione successivo (1 ora)
- Le incertezze nei campi di concentrazione nella parte Est del dominio Europeo possono essere dovute a: I) una inaccurata descrizione delle emissioni, II) difficoltà dei modelli con risoluzione di 10km nel riprodurre concentrazioni in zone di orografia complesse, III) inaccuratezza delle misure

*Lussana C, Uboldi F, Salvati MR. 2010. A spatial consistency test for surface observations from mesoscale meteorological networks. Q. J. R. Meteorol. Soc. 136: 1075-1088. DOI:10.1002/qj.622

Mario Adani
Francesco Uboldi
mario.adani@enea.it
f.uboldi@aria-net.it

